LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering of a Biosensor in Response to Malate in Bacillus licheniformis.

Photo from wikipedia

Malate is an essential intermediate in the tricarboxylic acid (TCA) cycle; it also has valuable uses in medicine and food. The production of malate with a microbial synthesis method is… Click to show full abstract

Malate is an essential intermediate in the tricarboxylic acid (TCA) cycle; it also has valuable uses in medicine and food. The production of malate with a microbial synthesis method is still in its early stages. One of the key problems in metabolic engineering is that the dynamic and subtle changes in malate are difficult to detect. It remains critical to develop techniques with direct and precise detection of malate in microbial metabolism, which facilitates high-throughput screening of the engineered strains. In this study, a genetically encoded biosensor in response to malate was constructed in B. licheniformis. Key regulator MalR and the action site of the biosensor were first identified. Then, the output of the reporter gene expression was amplified by introducing a strong constitutive promoter and iteratively tuning the action sites. The engineered biosensor can respond to malate from 5 to 15 g/L; within this range, it shows a linear correlation between eGFP fluorescence and malate concentration. This biosensor enrich our toolbox of synthetic biology in pathway engineering for malate production in microorganisms.

Keywords: engineering; biosensor response; malate; biosensor; response malate; biology

Journal Title: ACS synthetic biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.