LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Methylation-Directed, Synthetic Pap Switch Based on Self-Complementary Regulatory DNA Reconstituted in an All E. coli Cell-Free Expression System.

Photo from wikipedia

Pyelonephritis-associated pili (pap) enable migration of the uropathogenic Escherichia coli strain (UPEC) through the urinary tract. UPEC can switch between a stable 'ON phase' where the corresponding pap genes are… Click to show full abstract

Pyelonephritis-associated pili (pap) enable migration of the uropathogenic Escherichia coli strain (UPEC) through the urinary tract. UPEC can switch between a stable 'ON phase' where the corresponding pap genes are expressed and a stable 'OFF phase' where their transcription is repressed. Hereditary DNA methylation of either one of two GATC motives within the regulatory region stabilizes the respective phase over many generations. The underlying molecular mechanism is only partly understood. Previous investigations suggest that in vivo phase-variation stability results from cooperative action of the transcriptional regulators Lrp and PapI. Here, we use an E. coli cell-free expression system to study molecular functions of the pap regulatory region based on a specially designed, synthetic construct flanked by two reporter genes encoding fluorescent proteins for simple readout. On the basis of our observations we suggest that besides Lrp, the conformation of the self-complementary regulatory DNA plays a strong role in the regulation of phase-variation. Our work not only contributes to better understand the phase variation mechanism, but it represents a successful start for mimicking stable, hereditary, and strong expression control based on methylation. The conformation of the regulatory DNA corresponds to a Holliday junction. Gene expression must be expected to respond if opposite arms of the junction are drawn outward.

Keywords: methylation; phase; regulatory dna; dna; expression; coli cell

Journal Title: ACS synthetic biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.