LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uncovering the Distinct Properties of a Bacterial Type I-E CRISPR Activation System.

Photo from wikipedia

Synthetic gene regulators based upon CRISPR-Cas systems offer programmable technologies to control gene expression in bacteria. Bacterial CRISPR activators (CRISPRa) have been developed that use engineered type II CRISPR-dCas9 to… Click to show full abstract

Synthetic gene regulators based upon CRISPR-Cas systems offer programmable technologies to control gene expression in bacteria. Bacterial CRISPR activators (CRISPRa) have been developed that use engineered type II CRISPR-dCas9 to localize transcription activation domains near promoter elements. However, several reports have demonstrated distance-dependent requirements and periodical activation patterns that overall limit their flexibility. Here, we demonstrate the potential of using an alternative type I-E CRISPR-Cas system to create a CRISPRa with distinct and expanded regulatory properties. Furthermore, we create the first bacterial CRISPRa system based upon a type I-E CRISPR-Cas and characterize the distance-dependent activation patterns to reveal a distinct and more frequent periodicity of activation.

Keywords: system; crispr cas; activation; type crispr

Journal Title: ACS synthetic biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.