LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Incorporation of Modified Amino Acids by Engineered Elongation Factors with Expanded Substrate Capabilities

Photo from wikipedia

Noncanonical amino acid (ncAA) incorporation has led to significant advances in protein science and engineering. Traditionally, in vivo incorporation of ncAAs is achieved via amber codon suppression using an engineered… Click to show full abstract

Noncanonical amino acid (ncAA) incorporation has led to significant advances in protein science and engineering. Traditionally, in vivo incorporation of ncAAs is achieved via amber codon suppression using an engineered orthogonal aminoacyl-tRNA synthetase:tRNA pair. However, as more complex protein products are targeted, researchers are identifying additional barriers limiting the scope of currently available ncAA systems. One barrier is elongation factor Tu (EF-Tu), a protein responsible for proofreading aa-tRNAs, which substantially restricts ncAA scope by limiting ncaa-tRNA delivery to the ribosome. Researchers have responded by engineering ncAA-compatible EF-Tus for key ncAAs. However, this approach fails to address the extent to which EF-Tu inhibits efficient ncAA incorporation. Here, we demonstrate an alternative strategy leveraging computational analysis to broaden EF-Tu’s substrate specificity. Evolutionary analysis of EF-Tu and a naturally evolved specialized elongation factor, SelB, provide the opportunity to engineer EF-Tu by targeting amino acid residues that are associated with functional divergence between the two ancient paralogues. Employing amber codon suppression, in combination with mass spectrometry, we identified two EF-Tu variants with non-native substrate compatibility. Additionally, we present data showing these EF-Tu variants contribute to host organismal fitness, working cooperatively with components of native and engineered translation machinery. These results demonstrate the viability of our computational method and lend support to corresponding assumptions about molecular evolution. This work promotes enhanced polyspecific EF-Tu behavior as a viable strategy to expand ncAA scope and complements ongoing research emphasizing the importance of a comprehensive approach to further expand the genetic code.

Keywords: modified amino; incorporation modified; amino acids; elongation; substrate

Journal Title: ACS Synthetic Biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.