LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strict DNA Valence Control in Ultrasmall Thiolate-Protected Near-Infrared-Emitting Gold Nanoparticles.

Photo from wikipedia

Realizing robust DNA functionalization with strict valence control in the sub-2-nm thiolate-protected luminescent gold nanoparticles (AuNPs) is highly demanded but remains unsolved due to their unique Au(0) core and Au(I)-S… Click to show full abstract

Realizing robust DNA functionalization with strict valence control in the sub-2-nm thiolate-protected luminescent gold nanoparticles (AuNPs) is highly demanded but remains unsolved due to their unique Au(0) core and Au(I)-S shell structures. Herein, we report a facile strategy using phosphorothioates (ps)-modified DNA (psDNA) as a template for in situ growth of near-infrared (NIR)-emitting AuNPs with precisely controlled DNA valence. In addition, the particle size could be finely tuned in ultrasmall ranges from 1.3 to 2.6 nm with regulation of the ps length of psDNA. The ultrasmall NIR-emitting AuNPs bearing strict DNA valence are also demonstrated to be as powerful building block for well-organized one-dimensional assembly and optical probe for targeted cellular imaging. Such a facile strategy in decoration of luminescent AuNPs with strict DNA valence provides a new pathway for development of surface-functionalizable ultrasmall metal nanoplatforms toward various downstream applications.

Keywords: dna valence; strict dna; gold nanoparticles; valence; valence control; thiolate protected

Journal Title: Journal of the American Chemical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.