LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Access to Highly Efficient Energy Transfer in Metal-Organic Frameworks via Mixed Linkers Approach.

Photo from wikipedia

Herein, we report a new light-harvesting mixed-ligand Zr(IV)-based metal-organic framework (MOF), with underlying fcu topology, encompassing the [Zr6(μ3-O)4(μ3-OH)4(O2C-)12] cluster and an equimolar mixture of thiadiazole- and imidazole-functionalized ligands. The successful… Click to show full abstract

Herein, we report a new light-harvesting mixed-ligand Zr(IV)-based metal-organic framework (MOF), with underlying fcu topology, encompassing the [Zr6(μ3-O)4(μ3-OH)4(O2C-)12] cluster and an equimolar mixture of thiadiazole- and imidazole-functionalized ligands. The successful integration of ligands with similar structural features but with notable chemical distinction afforded the attainment of a highly efficient energy transfer. Notably, the very strong spectral overlap between the emission spectrum of benzim-idazole (energy donor) and the absorption spectrum of thiadiazole (energy acceptor) provided an ideal platform to achieve very rapid (picosecond time scale) and highly effi-cient energy transfer (around 90% efficiency), as evidenced by time-resolved spectroscopy. Remarkably, the ultrafast time-resolved experiments quantified for the first time the anticipated close proximity of the two linkers with an aver-age distance of 17 Å. This finding paves the way for the design and synthesis of periodic MOFs affording very efficient and fast energy transfer to mimic natural photosynthetic systems.

Keywords: efficient energy; energy transfer; energy; metal organic; highly efficient

Journal Title: Journal of the American Chemical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.