LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing the Gas Separation Selectivity of Mixed-Matrix Membranes Using a Dual-Interfacial Engineering Approach.

Photo from wikipedia

We report a dual-interfacial engineering approach that uses a sub-20 nm polycrystalline MOF-74 shell as a transition phase to engineer the MOF-polymer interface. The application of a shell MOF layer… Click to show full abstract

We report a dual-interfacial engineering approach that uses a sub-20 nm polycrystalline MOF-74 shell as a transition phase to engineer the MOF-polymer interface. The application of a shell MOF layer divides the original single interface problem into two interfaces: MOF-MOF and MOF-polymer, which can be individually addressed. The greater external surface area created by the uneven MOF-74 shell containing high-density open metal sites allows the MOF to interact with 300% polymer at the interface compared to traditional MOF, thereby ensuring good interfacial compatibility. When applied on UiO-66-NH2, its respective mixed-matrix membranes exhibit a simultaneous increase of CO2/CH4 separation selectivity and CO2 permeability with increasing MOF loading, implying a defect-free interface. When applied on MOF-801, the mixed-matrix membranes exhibit an ethylene/ethane separation selectivity up to 5.91, a drastic 76% increase compared to that of the neat polymer owing to a "gas focusing" mechanism promoted by the preferred pore orientation in the MOF-74 layer. This represents one of the most selective ethylene/ethane separation membranes reported to date.

Keywords: separation selectivity; mof; mixed matrix; separation; matrix membranes

Journal Title: Journal of the American Chemical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.