LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pillar[5]arene-Containing Metallacycles and Host-Guest Interaction Caused Aggregation-Induced Emission Enhancement Platforms.

Coordination-driven Pt metallacycles have shown potential in controllable modular self-assembly, which has made a vital contribution to biomedicine, catalysis, and multiresponsive materials. Herein, pillar[5]arene units were integrated into one skeleton… Click to show full abstract

Coordination-driven Pt metallacycles have shown potential in controllable modular self-assembly, which has made a vital contribution to biomedicine, catalysis, and multiresponsive materials. Herein, pillar[5]arene units were integrated into one skeleton through coordination-driven self-assembly, resulting in the formation of a hexagonal Pt(Ⅱ) metallacycle decorated with six pillar[5]arenes. The host-guest interactions of the as-prepared metallacycle (pillar[5]arenes as hosts) and 1-butyl-4-[4-(diphenylamino)styryl]pyridinium (guest) were investigated. The metallacycle was found to facilitate the coaggregation between the guests and pillar[5]arenes through a synergistic effect, thus engendering a sharp increase in fluorescence intensity. The resultant aggregate was investigated by DLS and TEM. Our studies imply that the pillar[5]arene-containing metallacycle can serve as a potential platform for realizing emission enhancement effects.

Keywords: emission enhancement; arene containing; metallacycle; host guest; pillar arene

Journal Title: Journal of the American Chemical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.