LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Site- and Enantiodifferentiating C(sp3)-H Oxidation Enables Asymmetric Access to Structurally and Stereochemically Diverse Saturated Cyclic Ethers.

Photo by homajob from unsplash

A manganese-catalyzed site- and enantiodifferentiating oxidation of C(sp3)-H bonds in saturated cyclic ethers has been described. The mild and practical method is applicable to a range of tetrahydrofurans, tetrahydropyrans, and… Click to show full abstract

A manganese-catalyzed site- and enantiodifferentiating oxidation of C(sp3)-H bonds in saturated cyclic ethers has been described. The mild and practical method is applicable to a range of tetrahydrofurans, tetrahydropyrans, and medium-sized cyclic ethers with multiple stereocenters and diverse substituent patterns in high efficiency with extremely efficient site- and enantiodiscrimination. Late-stage application in complex biological active molecules was further demonstrated. Mechanistic studies by combined experiments and computations elucidated the reaction mechanism and origins of stereoselectivity. The ability to employ ether substrates as the limiting reagent, together with a broad substrate scope, and a high level of chiral recognition, represent a valuable demonstration of the utility of asymmetric C(sp3)-H oxidation in complex molecule synthesis.

Keywords: saturated cyclic; cyclic ethers; site enantiodifferentiating; site; sp3 oxidation

Journal Title: Journal of the American Chemical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.