LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology.

Photo by bermixstudio from unsplash

The growth of three-dimensional covalent organic frameworks (3D COFs) with new topologies is still considered as a great challenge due to limited availability of high-connectivity building units. Here we report… Click to show full abstract

The growth of three-dimensional covalent organic frameworks (3D COFs) with new topologies is still considered as a great challenge due to limited availability of high-connectivity building units. Here we report the design and synthesis of 3D triptycene-based COFs, termed JUC-568 and JUC-569, following the deliberate symmetry-guided design principle. By combining a triangular prism (6-connected) node with a planar triangle (3-connected) or another triangular prism node, the targeted COFs adopt non-interpenetrated ceq or acs topology, respectively. Both materials show permanent porosity and impressive performance in the adsorption of CO2 (∼98 cm3/g at 273 K and 1 bar), CH4 (∼48 cm3/g at 273 K and 1 bar), and especially H2 (up to 274 cm3/g or 2.45 wt % at 77 K and 1 bar), which is highest among porous organic materials reported to date. This research thus provides a promising strategy for diversifying 3D COFs based on complex building blocks and promotes their potential applications in energy storage and environment-related fields.

Keywords: three dimensional; triptycene based; ceq acs; topology; organic frameworks; covalent organic

Journal Title: Journal of the American Chemical Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.