LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electronic Relaxation Pathways in Heavy-Atom-Free Photosensitizers Absorbing Near-Infrared Radiation and Exhibiting High Yields of Singlet Oxygen Generation.

Photo by bermixstudio from unsplash

Heavy-atom-free photosensitizers (HAF-PSs) based on thionation of carbonyl groups of readily accessible organic compounds are rapidly emerging as a versatile class of molecules. However, their photochemical properties and electronic relaxation… Click to show full abstract

Heavy-atom-free photosensitizers (HAF-PSs) based on thionation of carbonyl groups of readily accessible organic compounds are rapidly emerging as a versatile class of molecules. However, their photochemical properties and electronic relaxation mechanisms are currently unknown. Investigating the excited-state dynamics is essential to understand their benefits and limitations and to develop photosensitizers with improved photochemical properties. Herein, the photochemical and electronic-structure properties of two of the most promising HAF-PSs developed to date are revealed. It is shown that excitation of thio-4-(dimethylamino)naphthalamide and thionated Nile Red with near-infrared radiation leads to the efficient population of the triplet manifold through multiple relaxation pathways in hundreds of femtoseconds. The strong singlet-triplet couplings in this family of photosensitizers should enable a broad range of applications, including in photodynamic therapy, photocatalysis, photovoltaics, organic LEDs, and photon up-conversion.

Keywords: free photosensitizers; relaxation; heavy atom; near infrared; electronic relaxation; atom free

Journal Title: Journal of the American Chemical Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.