Azo-based photoswitches have shown promise as molecular solar-thermal (MOST) materials due to their ability to store energy in their metastable Z isomeric form. The energy is then released, in the… Click to show full abstract
Azo-based photoswitches have shown promise as molecular solar-thermal (MOST) materials due to their ability to store energy in their metastable Z isomeric form. The energy is then released, in the form of heat, upon photoisomerization to the thermodynamically stable E form. However, obtaining a high energy density and recovering the stored energy with high efficiency requires the materials to be employed in the condensed phase and display a high degree of Z to E switching, both of which are challenging to engineer. Here, we show that arylazopyrazole motifs undergo efficient redox-induced Z to E switching in both the solution and the condensed phase to a higher completeness of switching than achieved photochemically. This redox-initiated pathway lowers the barrier of Z to E isomerization by 27 kJ/mol, while in the condensed phase, the efficiency of electrochemical switching is improved by over an order of magnitude relative to that in the solution state. The influence of the photoswitch's phase, electrical conductivity, and viscosity on the electrochemical switching in the condensed phase is reported, culminating in a set of design rules to facilitate further investigations. We anticipate the use of an alternative stimulus to light will facilitate the application of MOST materials in situations where phototriggered heat release is unachievable or inefficient, e.g., indoor or at night. Furthermore, exploiting the electrocatalytic mechanism, whereby a catalytic amount of charge triggers Z to E switching via a redox process, bypasses the need for fine tuning of the photoswitching chromophore to achieve complete Z to E switching, thus providing an alternative approach to photoswitch molecular design.
               
Click one of the above tabs to view related content.