Enzymes exert control over the reactivity of metal centers with precise tuning of the secondary coordination sphere of active sites. One particularly elegant illustration of this principle is in the… Click to show full abstract
Enzymes exert control over the reactivity of metal centers with precise tuning of the secondary coordination sphere of active sites. One particularly elegant illustration of this principle is in the controlled delivery of proton and electron equivalents in order to activate abundant but kinetically inert oxidants such as O2 for oxidative chemistry. Chemists have drawn inspiration from biology in designing molecular systems where the secondary coordination sphere can shuttle protons or electrons to substrates. However, a biomimetic activation of O2 requires the transfer of both protons and electrons, and molecular systems where ancillary ligands are designed to provide both of these equivalents are comparatively rare. Here, we report the use of a dihydrazonopyrrole (DHP) ligand complexed to Fe to perform exactly such a biomimetic activation of O2. In the presence of O2, this complex directly generates a high spin Fe(III)-hydroperoxo intermediate which features a DHP• ligand radical via ligand-based transfer of an H atom. This system displays oxidative reactivity and ultimately releases hydrogen peroxide, providing insight on how secondary coordination sphere interactions influence the evolution of oxidizing intermediates in Fe-mediated aerobic oxidations.
               
Click one of the above tabs to view related content.