LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Degradation Chemistry and Kinetic Stabilization of Magnetic CrI3.

Photo by trnavskauni from unsplash

The discovery of the intrinsic magnetic order in single-layer chromium trihalides (CrX3, X = I, Br, and Cl) has drawn intensive interest due to their potential application in spintronic devices.… Click to show full abstract

The discovery of the intrinsic magnetic order in single-layer chromium trihalides (CrX3, X = I, Br, and Cl) has drawn intensive interest due to their potential application in spintronic devices. However, the notorious environmental instability of this class of materials under ambient conditions renders their device fabrication and practical application extremely challenging. Here, we performed a systematic investigation of the degradation chemistry of chromium iodide (CrI3), the most studied among CrX3 families, via a joint spectroscopic and microscopic analysis of the structural and composition evolution of bulk and exfoliated nanoflakes in different environments. Unlike other air-sensitive 2D materials, CrI3 undergoes a pseudo-first-order hydrolysis in the presence of pure water toward the formation of amorphous Cr(OH)3 and hydrogen iodide (HI) with a rate constant of kI = 0.63 day-1 without light. In contrast, a faster pseudo-first-order surface oxidation of CrI3 occurs in a pure O2 environment, generating CrO3 and I2 with a large rate constant of kCr = 4.2 day-1. Both hydrolysis and surface oxidation of CrI3 can be accelerated via light irradiation, resulting in its ultrafast degradation in air. The new chemical insights obtained allow for the design of an effective stabilization strategy for CrI3 with preserved optical and magnetic properties. The use of organic acid solvents (e.g., formic acid) as reversible capping agents ensures that CrI3 nanoflakes remain stable beyond 1 month due to the effective suppression of both hydrolysis and oxidation of CrI3.

Keywords: degradation chemistry; oxidation cri3; stabilization; cri3; chemistry

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.