Surface-initiated polymerization reactions are a powerful tool to generate chain-end-tethered polymer brushes. This report presents a synthetic strategy that gives access to structurally well-defined hydrocarbon polymer brushes of controlled molecular… Click to show full abstract
Surface-initiated polymerization reactions are a powerful tool to generate chain-end-tethered polymer brushes. This report presents a synthetic strategy that gives access to structurally well-defined hydrocarbon polymer brushes of controlled molecular weights, which can be further modified to generate more complex surface-attached polymer architectures. The hydrocarbon brushes reported in this study are polymethylene brushes that are obtained via surface-initiated C1 polyhomologation of dimethylsulfoxonium methylide. The strategy outlined here is based on the use of an alkylboronic acid pinacol ester initiator, which allows for controlled, unidirectional chain growth by monomer insertion into only the C-B bond of the initiator and which presents the polymerization active group at the growing polymer chain end. This surface-initiated C1 polyhomologation methodology is compatible with photopatterning strategies and can be used to generate micropatterned polymethylene brush films. Furthermore, conversion of the boronic ester chain-end functionalities to hydroxyl groups allows for selective chain-end modification and enables access to a variety of surface-anchored block copolymer architectures by chain extension via, for example, ring-opening or atom transfer radical polymerization chemistries.
               
Click one of the above tabs to view related content.