LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemically Driven Photosynthetic Electron Transport in Cyanobacteria Lacking Photosystem II.

Photo from wikipedia

Light-activated photosystem II (PSII) carries out the critical step of splitting water in photosynthesis. However, PSII is susceptible to light-induced damage. Here, results are presented from a novel microbial electro-photosynthetic… Click to show full abstract

Light-activated photosystem II (PSII) carries out the critical step of splitting water in photosynthesis. However, PSII is susceptible to light-induced damage. Here, results are presented from a novel microbial electro-photosynthetic system (MEPS) that uses redox mediators in conjunction with an electrode to drive electron transport in live Synechocystis (ΔpsbB) cells lacking PSII. MEPS-generated, light-dependent current increased with light intensity up to 2050 μmol photons m-2 s-1, which yielded a delivery rate of 113 μmol electrons h-1 mg-chl-1 and an average current density of 150 A m-2 s-1 mg-chl-1. P700+ re-reduction kinetics demonstrated that initial rates exceeded wildtype PSII-driven electron delivery. The electron delivery occurs ahead of the cytochrome b6f complex to enable both NADPH and ATP production. This work demonstrates an electrochemical system that can drive photosynthetic electron transport, provides a platform for photosynthetic foundational studies, and has the potential for improving photosynthetic performance at high light intensities.

Keywords: electrochemically driven; photosystem; electron transport; photosynthetic electron; electron

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.