Lanthanide-based luminescent materials have unique properties and are well-studied for many potential applications. In particular, the characteristic 5d → 4f emission of divalent lanthanide ions such as EuII allows for… Click to show full abstract
Lanthanide-based luminescent materials have unique properties and are well-studied for many potential applications. In particular, the characteristic 5d → 4f emission of divalent lanthanide ions such as EuII allows for tunability of the emissive properties via modulation of the coordination environment. We report the synthesis and photoluminescence investigation of pentamethylcyclopentadienyleuropium(II) tetrahydroborate bis(tetrahydrofuran) dimer (1), the first example of an organometallic, discrete molecular EuII band-shift luminescence thermometer. Complex 1 exhibits an absolute sensitivity of 8.2 cm-1 K-1 at 320 K, the highest thus far observed for a lanthanide-based band-shift thermometer. Opto-structural correlation via variable-temperature single-crystal X-ray diffraction and fluorescence spectroscopy allows rationalization of the remarkable thermometric luminescence of complex 1 and reveals the significant potential of molecular EuII compounds in luminescence thermometry.
               
Click one of the above tabs to view related content.