LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical and Electrochemical O2 Reduction on Earth-Abundant M-N-C Catalysts and Implications for Mediated Electrolysis.

Photo from wikipedia

M-N-C catalysts, incorporating non-precious-metal ions (e.g. M = Fe, Co) within a nitrogen-doped carbon support, have been the focus of broad interest for electrochemical O2 reduction and aerobic oxidation reactions.… Click to show full abstract

M-N-C catalysts, incorporating non-precious-metal ions (e.g. M = Fe, Co) within a nitrogen-doped carbon support, have been the focus of broad interest for electrochemical O2 reduction and aerobic oxidation reactions. The present study explores the mechanistic relationship between the O2 reduction mechanism under electrochemical and chemical conditions. Chemical O2 reduction is investigated via the aerobic oxidation of a hydroquinone, in which the O-H bonds supply the protons and electrons needed for O2 reduction to water. Mechanistic studies have been conducted to elucidate whether the M-N-C catalyst couples two independent half-reactions (IHR), similar to electrode-mediated processes, or mediates a direct inner-sphere reaction (ISR) between O2 and the organic molecule. Kinetic data support the latter ISR pathway. This conclusion is reinforced by rate/potential correlations that reveal significantly different Tafel slopes, implicating different mechanisms for chemical and electrochemical O2 reduction.

Keywords: abundant catalysts; earth abundant; reduction earth; chemical electrochemical; electrochemical reduction; reduction

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.