LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Guest Molecule-Mediated Energy Harvesting in a Conformationally Sensitive Peptide–Metal Organic Framework

Photo by itfeelslikefilm from unsplash

The apparent piezoelectricity of biological materials is not yet fully understood at the molecular level. In particular, dynamic noncovalent interactions, such as host–guest binding, are not included in the classical… Click to show full abstract

The apparent piezoelectricity of biological materials is not yet fully understood at the molecular level. In particular, dynamic noncovalent interactions, such as host–guest binding, are not included in the classical piezoelectric model, which limits the rational design of eco-friendly piezoelectric supramolecular materials. Here, inspired by the conformation-dependent mechanoresponse of the Piezo channel proteins, we show that guest–host interactions can amplify the electromechanical response of a conformationally mobile peptide metal–organic framework (MOF) based on the endogenous carnosine dipeptide, demonstrating a new type of adaptive piezoelectric supramolecular material. Density functional theory (DFT) predictions validated by piezoresponse force microscopy (PFM) measurements show that directional alignment of the guest molecules in the host carnosine–zinc peptide MOF channel determines the macroscopic electromechanical properties. We produce stable, robust 1.4 V open-circuit voltage under applied force of 25 N with a frequency of 0.1 Hz. Our findings demonstrate that the regulation of host–guest interactions could serve as an efficient method for engineering sustainable peptide-based power generators.

Keywords: peptide metal; peptide; metal organic; organic framework

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.