LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modulating the Reactivity of Liquid Ga Nanoparticle Inks by Modifying Their Surface Chemistry.

Photo from wikipedia

Micro- and nanosized particles of liquid metals, particularly Ga-based alloys, are attracting increasing attention for applications in several fields. The surface functionalization of Ga-based nanoparticles (NPs) with organic ligands renders… Click to show full abstract

Micro- and nanosized particles of liquid metals, particularly Ga-based alloys, are attracting increasing attention for applications in several fields. The surface functionalization of Ga-based nanoparticles (NPs) with organic ligands renders easily processable inks. However, little is known about the interaction of these molecules with the native oxide skin, which regulates many properties of liquid metal NPs. Here, we investigate the impact of selected capping ligands on the native oxide thickness of Ga NPs and on their chemical reactivity, choosing the galvanic replacement reaction (GRR) as one example. We demonstrate that amines and carboxylic acids promote thicker oxide shells while thiols and phosphines hinder the oxide growth. Upon pondering thermodynamics and kinetics factors, we conclude the affinity of the anchoring group toward the metal core being the major driver in determining the oxide thickness. We go on to prove that thicker shells foster the formation of Cu-Ga nanodimers following the reaction of the Ga NPs with a copper-amine complex. In contrast, thinner oxides lead to formation of isolated Cu NPs. This study reveals the importance of the choice of ligand when studying Ga-based metal NPs for different applications since both their surface chemistry and reactivity are largely affected by this decision.

Keywords: chemistry; reactivity liquid; surface chemistry; modulating reactivity; reactivity

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.