LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Creating Optimal Pockets in a Clathrochelate-Based Metal-Organic Framework for Gas Adsorption and Separation: Experimental and Computational Studies.

Photo by jjames25 from unsplash

The rational design and synthesis of robust metal-organic frameworks (MOFs) based on novel organic building blocks are fundamental aspects of reticular chemistry. Beyond simply fabricating new organic linkers, however, it… Click to show full abstract

The rational design and synthesis of robust metal-organic frameworks (MOFs) based on novel organic building blocks are fundamental aspects of reticular chemistry. Beyond simply fabricating new organic linkers, however, it is important to elucidate structure-property relationships at the molecular level to develop high-performing materials. In this work, we successfully targeted a highly porous and robust cage-type MOF (NU-200) with an nbo-derived fof topology through the deliberate assembly of a cyclohexane-functionalized iron(II)-clathrochelate-based meta-benzenedicarboxylate linker with a Cu2(CO2)4 secondary building unit (SBU). NU-200 exhibited an outstanding adsorption capacity of xenon and a high ideal adsorbed solution theory (IAST) predicted selectivity for a 20/80 v/v mixture of xenon (Xe)/krypton (Kr) at 298 K and 1.0 bar. Our extensive computational simulations with grand canonical Monte Carlo (GCMC) and density functional theory (DFT) on NU-200 indicated that the MOF's hierarchical bowl-shaped nanopockets surrounded by custom-designed cyclohexyl groups─instead of the conventionally believed open metal sites (OMSs)─played a crucial role in reinforcing Xe-binding affinity. The optimally sized pockets firmly trapped Xe through numerous supramolecular interactions including Xe···H, Xe···O, and Xe···π. Additionally, we validated the unique pocket confinement effect by experimentally and computationally employing the similarly sized probe, sulfur dioxide (SO2), which provided significant insights into the molecular underpinnings of the high uptake of SO2 (11.7 mmol g-1), especially at a low pressure of 0.1 bar (8.5 mmol g-1). This work therefore can facilitate the judicious design of organic building blocks, producing MOFs featuring tailor-made pockets to boost gas adsorption and separation performances.

Keywords: adsorption; adsorption separation; clathrochelate based; metal organic; gas adsorption; metal

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.