LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monolayer NiIr-Layered Double Hydroxide as a Long-Lived Efficient Oxygen Evolution Catalyst for Seawater Splitting.

Photo from wikipedia

Promoting the oxygen evolution reaction (OER) with saline water is highly desired to realize seawater splitting. This requires OER catalysts to resist serious corrosion and undesirable chloride oxidation. We introduce… Click to show full abstract

Promoting the oxygen evolution reaction (OER) with saline water is highly desired to realize seawater splitting. This requires OER catalysts to resist serious corrosion and undesirable chloride oxidation. We introduce a 5d transition metal, Ir, to develop a monolayer NiIr-layered double hydroxide (NiIr-LDH) as the catalyst with enhanced OER performance for seawater splitting. The NiIr-LDH catalyst delivers 500 mA/cm2 at only 361 mV overpotential with ∼99% O2 Faradaic efficiency in alkaline seawater, which is more active than commercial IrO2 (763 mV, 23%) and the best known OER catalyst NiFe-LDH (530 mV, 92%). Moreover, it shows negligible activity loss at up to 650 h chronopotentiometry measurements at an industrial level (500 mA/cm2), while commercial IrO2 and NiFe-LDH rapidly deactivated within 0.2 and 10 h, respectively. The incorporation of Ir into the Ni(OH)2 layer greatly altered the electron density of Ir and Ni sites, which was revealed by X-ray absorption fine structure and density functional theory (DFT) calculations. Coupling the electrochemical measurements and in situ Raman spectrum with DFT calculations, we further confirm that the generation of rate-limiting intermediate *O and *OOH species was accelerated on Ni and Ir sites, respectively, which is responsible for the high seawater splitting performance. Our results also provide an opportunity to fabricate LDH materials containing 5d metals for applications beyond seawater splitting.

Keywords: oxygen evolution; catalyst; seawater; seawater splitting; niir layered; monolayer niir

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.