LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quasi-Covalently Coupled Ni-Cu Atomic Pair for Synergistic Electroreduction of CO2.

Photo by geraninmo from unsplash

Developing highly active, selective, and stable electrocatalysts for the carbon dioxide reduction reaction (CO2RR) is crucial to establish a CO2 conversion system for industrial implementation and, therefore, to realize an… Click to show full abstract

Developing highly active, selective, and stable electrocatalysts for the carbon dioxide reduction reaction (CO2RR) is crucial to establish a CO2 conversion system for industrial implementation and, therefore, to realize an artificially closed carbon loop. This can only be achieved through the rational material design based upon the knowledge of the operational active site at the molecular scale. Enlightened by theoretical screening, herein, we for the first time manipulate a novel Ni-Cu atomic pair configuration toward improved CO2RR performance. Systematic characterizations and theoretical modeling reveal that the secondary Cu metal incorporation positively shifts the Ni 3d orbital energy to the Fermi level and thus accelerates the rate-determining step, *COOH formation. In addition, the intrinsic inactivity of Cu toward the competing hydrogen evolution reaction causes a considerable reaction barrier for water dissociation on the Ni-Cu moiety. Due to these attributes, the as-developed Ni/Cu-N-C catalyst exhibits excellent catalytic activity and selectivity, with a record-high turnover frequency of 20,695 h-1 at -0.6 V (vs RHE) and a maximum Faradaic efficiency of 97.7% for CO production. Furthermore, the dynamic structure evolution monitored by operando X-ray absorption fine-structure spectroscopy unveils the interaction between the Ni center and CO2 molecules and the synergistic effect of the Ni-Cu atomic pair on CO2RR activity.

Keywords: covalently coupled; quasi covalently; atomic pair; co2; coupled atomic

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.