LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Core-Shell Three-Dimensional Perovskite Nanocrystals with Chiral-Induced Spin Selectivity for Room-Temperature Spin Light-Emitting Diodes.

Photo from wikipedia

We developed type-II core-shell nanocrystals (NCs) with a chiral low-dimensional perovskite shell and an achiral 3D MAPbBr3 core. The core-shell NCs exhibit spin-polarized luminescence at the first excitation band of… Click to show full abstract

We developed type-II core-shell nanocrystals (NCs) with a chiral low-dimensional perovskite shell and an achiral 3D MAPbBr3 core. The core-shell NCs exhibit spin-polarized luminescence at the first excitation band of the achiral core, which is due to the chiral-induced spin selectivity (CISS) effect-governed spin-dependent shell-to-core electron transportation and the subsequent electron-hole recombination in the core. The preferred spin state of the transferred electrons is determined by the handness of the chiral shell. For the core-shell NCs film, a photoluminescence quantum yield (PLQY) of 54% and a circularly polarized luminescence (CPL) with a maximum |glum| of 4.0 × 10-3 are obtained at room temperature. Finally, we achieved a spin-polarized light-emitting diode (spin-LED), affording a circularly polarized electroluminescence (CP-EL) with a |gCP-EL|of 6.0 × 10-3 under ambient conditions.

Keywords: core; chiral induced; core shell; dimensional perovskite; spin; shell

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.