LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interfacial Evolution of the Solid Electrolyte Interphase and Lithium Deposition in Graphdiyne-Based Lithium-Ion Batteries.

Photo by fachrizalm from unsplash

All-carbon graphdiyne (GDY)-based materials have attracted extensive attention owing to their extraordinary structures and outstanding performance in electrochemical energy storage. Straightforward insights into the interfacial evolution at GDY electrode/electrolyte interface… Click to show full abstract

All-carbon graphdiyne (GDY)-based materials have attracted extensive attention owing to their extraordinary structures and outstanding performance in electrochemical energy storage. Straightforward insights into the interfacial evolution at GDY electrode/electrolyte interface could crucially enrich the fundamental comprehensions and inspire targeted regulations. Herein, in situ optical microscopy and atomic force microscopy monitoring of the GDY and N-doped GDY electrodes reveal the interplay between the solid electrolyte interphase (SEI) and Li deposition. The growth and continuous accumulation of the flocculent-like SEI is directly tracked at the surface of GDY electrode. Moreover, the nanoparticle-shaped SEI homogeneously propagates at the interface when N configurations are involved, providing a critical clue for the N-doping effects of stabilizing interfaces and homogenizing Li deposition. This work probes into the dynamic evolution and structure-reactivity correlation in detail, creating effective strategies for GDY-based materials optimization in lithium-ion batteries.

Keywords: interfacial evolution; solid electrolyte; microscopy; deposition; evolution

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.