LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modular Access to Chiral α-(Hetero)aryl Amines via Ni/Photoredox-Catalyzed Enantioselective Cross-Coupling.

Photo by bernardhermant from unsplash

Chiral α-aryl N-heterocycles are commonly found in natural products, pharmaceutical agents, and chiral catalysts but remain challenging to access via asymmetric catalysis. Herein, we report a general and modular approach… Click to show full abstract

Chiral α-aryl N-heterocycles are commonly found in natural products, pharmaceutical agents, and chiral catalysts but remain challenging to access via asymmetric catalysis. Herein, we report a general and modular approach for the direct enantioselective α-arylation of saturated azacycles and acyclic N-alkyl benzamides via nickel/photoredox dual catalysis. This process exploits the hydrogen atom transfer ability of photoeliminated chlorine radicals to convert azacycles to the corresponding α-amino alkyl radicals that then are coupled with ubiquitous and inexpensive (hetero)aryl chlorides. These coupling reactions require no oxidants or organometallic reagents, feature feedstock starting materials, a broad substrate scope, and high enantioselectivities, and are applicable to late-stage diversification of medicinally relevant complex molecules. Mechanistic studies suggest that the nickel catalyst uncommonly plays multiple roles, accomplishing chlorine radical generation, α-amino radical capture, cross-coupling, and asymmetric induction.

Keywords: hetero aryl; access; aryl; cross coupling

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.