LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Porous π-π Stacking Framework with Dicopper(I) Sites and Adjacent Proton Relays for Electroreduction of CO2 to C2+ Products.

Photo by reubenmansell from unsplash

Crystalline porous materials sustained by supramolecular interactions (e.g., π-π stacking interactions) are a type of molecular crystals showing considerable stability, but their applications are rarely reported due to the high… Click to show full abstract

Crystalline porous materials sustained by supramolecular interactions (e.g., π-π stacking interactions) are a type of molecular crystals showing considerable stability, but their applications are rarely reported due to the high difficulty of their construction. Herein, a stable π-π stacking framework formed by a trinuclear copper(I) compound [Cu3(HBtz)3(Btz)Cl2] (CuBtz, HBtz = benzotriazole) with pyrazolate-bridged dicopper(I) sites is reported and employed for electrochemical CO2 reduction, showing an impressive performance of 73.7 ± 2.8% Faradaic efficiency for C2+ products [i.e., ethylene (44%), ethanol (21%), acetate (4.7%), and propanol (4%)] with a current density of 7.9 mA cm-2 at the potential of -1.3 V versus RHE in an H-type cell and a Faradic efficiency (61.6%) of C2+ products with a current density of ≈1 A cm-2 and a reaction rate of 5639 μmol m-2 s-1 at the potential of -1.6 V versus RHE in a flow cell device, representing an impressive performance reported to date. In-situ infrared spectroscopy, density functional theory calculations, and control experiments revealed that the uncoordinated nitrogen atoms of benzotriazolates in the immediate vicinity can act as proton relays and cooperate with the dicopper(I) site to promote the hydrogenation process of the *CO intermediate and the C-C coupling, resulting in the highly selective electroreduction of CO2 to C2+ products.

Keywords: co2 products; stacking framework; proton relays; dicopper sites; co2; electroreduction co2

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.