LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Achieving Record-Efficiency Organic Solar Cells upon Tuning the Conformation of Solid Additives

Photo from wikipedia

Volatile solid additives (SADs) are considered as a simple yet effective approach to tune the film morphology for high-performance organic solar cells (OSCs). However, the structural effects of the SADs… Click to show full abstract

Volatile solid additives (SADs) are considered as a simple yet effective approach to tune the film morphology for high-performance organic solar cells (OSCs). However, the structural effects of the SADs on the photovoltaic performance are still elusive. Herein, two volatilizable SADs were designed and synthesized. One is SAD1 with twisted conformation, while the other one is planar SAD2 with the S···O noncovalent intramolecular interactions (NIIs). The theoretical and experimental results revealed that the planar SAD2 with smaller space occupation can more easily insert between the Y6 molecules, which is beneficial to form a tighter intermolecular packing mode of Y6 after thermal treatment. As a result, the SAD2-treated OSCs exhibited less recombination loss, more balanced charge mobility, higher hole transfer rate, and more favorable morphology, resulting in a record power conversion efficiency (PCE) of 18.85% (certified PCE: 18.7%) for single-junction binary OSCs. The universality of this study shed light on understanding the conformation effects of SADs on photovoltaic performances of OSCs.

Keywords: organic solar; conformation; solar cells; solid additives; record; efficiency

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.