LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Enantioselective Suzuki–Miyaura Coupling To Form Axially Chiral Biphenols

Photo by angelokarabo053 from unsplash

Axial chirality features prominently in molecules of biological interest as well as chiral catalyst designs, and atropisomeric 2,2′-biphenols are particularly prevalent. Atroposelective metal-catalyzed cross-coupling is an attractive and modular approach… Click to show full abstract

Axial chirality features prominently in molecules of biological interest as well as chiral catalyst designs, and atropisomeric 2,2′-biphenols are particularly prevalent. Atroposelective metal-catalyzed cross-coupling is an attractive and modular approach to access enantioenriched biphenols, and yet existing protocols cannot achieve this directly. We address this challenge through the use of enantiopure, sulfonated SPhos (sSPhos), an existing ligand that has until now been used only in racemic form and that derives its chirality from an atropisomeric axis that is introduced through sulfonation. We believe that attractive noncovalent interactions involving the ligand sulfonate group are responsible for the high levels of asymmetric induction that we obtain in the 2,2′-biphenol products of Suzuki–Miyaura coupling, and we have developed a highly practical resolution of sSPhos via diastereomeric salt recrystallization.

Keywords: coupling form; miyaura coupling; suzuki miyaura; enantioselective suzuki

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.