LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wireless Lateral Flow Device for Biosensing.

Photo by kellysikkema from unsplash

Many biosensing methods rely on signals produced by enzyme-catalyzed reactions and efficient methods to detect and record this activity. Herein, we report a wireless lateral flow device and demonstrate the… Click to show full abstract

Many biosensing methods rely on signals produced by enzyme-catalyzed reactions and efficient methods to detect and record this activity. Herein, we report a wireless lateral flow device and demonstrate the conversion of oxidase reactions to changes in the resonance of radio frequency identification (RFID) circuits. The detection is triggered by polyoxometalate-catalyzed oxidative doping of polypyrrole (pPy) when exposed to oxidase-generated H2O2. We have integrated this transduction and RFID capability into a lateral flow device to create a low-cost, rapid, and portable method for quantitative biological signal detection. We further report a new method for creating functional coatings from pPy core-shell colloidal particles bioconjugated for streptavidin-biotin recognition with glucose oxidase or pyruvate oxidase. The biofunctionalized pPy particles coalesce on the nitrocellulose membrane to produce a chemiresistive band. Glucose or pyruvate solutions result in formation of H2O2 at the pPy bands, functionalized with the respective oxidase, to produce conductivity enhancements exceeding 7ยท105%. Placing the pPy band in the RFID circuit converts the resistivity response to a change of RF resonance. The enzymatic response of glucose oxidase is recorded within 30 min with as low as 0.6 mM of glucose using this lateral flow device. Pyruvate is also shown to produce large responses. The oxidase enzymes/pPy transduction establishes a resistivity-based platform for the construction of a new family of lateral flow devices capable of detecting and quantifying biological targets.

Keywords: wireless lateral; flow device; lateral flow; oxidase

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.