LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Luminescence Enhancement Due to Symmetry Breaking in Doped Halide Perovskite Nanocrystals

Photo from wikipedia

Metal-halide perovskite nanocrystals have demonstrated excellent optoelectronic properties for light-emitting applications. Isovalent doping with various metals (M2+) can be used to tailor and enhance their light emission. Although crucial to… Click to show full abstract

Metal-halide perovskite nanocrystals have demonstrated excellent optoelectronic properties for light-emitting applications. Isovalent doping with various metals (M2+) can be used to tailor and enhance their light emission. Although crucial to maximize performance, an understanding of the universal working mechanism for such doping is still missing. Here, we directly compare the optical properties of nanocrystals containing the most commonly employed dopants, fabricated under identical synthesis conditions. We show for the first time unambiguously, and supported by first-principles calculations and molecular orbital theory, that element-unspecific symmetry-breaking rather than element-specific electronic effects dominate these properties under device-relevant conditions. The impact of most dopants on the perovskite electronic structure is predominantly based on local lattice periodicity breaking and resulting charge carrier localization, leading to enhanced radiative recombination, while dopant-specific hybridization effects play a secondary role. Our results suggest specific guidelines for selecting a dopant to maximize the performance of perovskite emitters in the desired optoelectronic devices.

Keywords: enhancement due; perovskite nanocrystals; halide perovskite; symmetry breaking; luminescence enhancement

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.