LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning the Force, Speed, and Efficiency of an Autonomous Chemically Fueled Information Ratchet

Photo by indiratjokorda from unsplash

Autonomous chemically fueled molecular machines that function through information ratchet mechanisms underpin the nonequilibrium processes that sustain life. These biomolecular motors have evolved to be well-suited to the tasks they… Click to show full abstract

Autonomous chemically fueled molecular machines that function through information ratchet mechanisms underpin the nonequilibrium processes that sustain life. These biomolecular motors have evolved to be well-suited to the tasks they perform. Synthetic systems that function through similar mechanisms have recently been developed, and their minimalist structures enable the influence of structural changes on machine performance to be assessed. Here, we probe the effect of changes in the fuel and barrier-forming species on the nonequilibrium operation of a carbodiimide-fueled rotaxane-based information ratchet. We examine the machine’s ability to catalyze the fuel-to-waste reaction and harness energy from it to drive directional displacement of the macrocycle. These characteristics are intrinsically linked to the speed, force, power, and efficiency of the ratchet output. We find that, just as for biomolecular motors and macroscopic machinery, optimization of one feature (such as speed) can compromise other features (such as the force that can be generated by the ratchet). Balancing speed, power, efficiency, and directionality will likely prove important when developing artificial molecular motors for particular applications.

Keywords: speed; information ratchet; ratchet; force; efficiency

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.