LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis.

Photo from wikipedia

Plasmonic metal nanoparticles (e.g., Ag, Au, and Cu) constitute a class of materials that interact with light via the excitation of localized surface plasmon resonance (LSPR). Numerous studies have reported… Click to show full abstract

Plasmonic metal nanoparticles (e.g., Ag, Au, and Cu) constitute a class of materials that interact with light via the excitation of localized surface plasmon resonance (LSPR). Numerous studies have reported substantial enhancements in the rates of chemical reactions on illuminated plasmonic nanoparticle catalysts compared to corresponding systems in the absence of illumination. There are two mechanisms that have been proposed to explain the LSPR-induced chemical reactivity. One mechanism assumes a local plasmon-induced hot charge-carrier-mediated activation of the reactants, while the other assumes an LSPR-induced equilibrium heating of the catalyst, which leads to energy transfer to and chemical reaction of the adsorbed reactants. In this contribution, we developed a setup amenable to accurate in situ catalyst temperature and kinetic reaction rate measurements. We employed this setup to study the LSPR-induced rate enhancement in a case study of the CO oxidation reaction on plasmonic, monometallic Ag nanoparticle catalysts supported on α-Al2O3. We explored various Ag loadings and clustering levels. Our data show that the equilibrium heating of the catalyst cannot fully explain the illumination-induced plasmonic rate enhancements. This is the case even for high loading and clustering of Ag nanoparticles, where the equilibrium heating significantly increases. Based on the analysis, we propose that local effects, related to the plasmon-induced activation of adsorbates (reactants) via electronic excitation of the reactant or photothermal heating of the reactants that is highly localized to the individual nanoparticles, play a critical role in driving LSPR-induced chemical reactions.

Keywords: equilibrium heating; rate enhancement; rate; lspr induced; elucidating roles

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.