LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating Oxidative Addition Mechanisms of Allylic Electrophiles with Low-Valent Ni/Co Catalysts Using Electroanalytical and Data Science Techniques.

Photo from wikipedia

The catalysis by a π-allyl-Co/Ni complex has drawn significant attention recently due to its distinct reactivity in reductive Co/Ni-catalyzed allylation reactions. Despite significant success in reaction development, the critical oxidative… Click to show full abstract

The catalysis by a π-allyl-Co/Ni complex has drawn significant attention recently due to its distinct reactivity in reductive Co/Ni-catalyzed allylation reactions. Despite significant success in reaction development, the critical oxidative addition mechanism to form the π-allyl-Co/Ni complex remains unclear. Herein, we present a study to investigate this process with four catalysis-relevant complexes: Co(MeBPy)Br2, Co(MePhen)Br2, Ni(MeBPy)Br2, and Ni(MePhen)Br2. Enabled by an electroanalytical platform, Co(I)/Ni(I) species were found responsible for the oxidative addition of allyl acetate. Kinetic features of different substrates were characterized through linear free-energy relationship (Hammett-type) studies, statistical modeling, and a DFT computational study. In this process, a coordination-ionization-type transition state was proposed, sharing a similar feature with Pd(0)-mediated oxidative addition in Tsuji-Trost reactions. Computational and ligand structural analysis studies support this mechanism, which should provide key information for next-generation catalyst development.

Keywords: addition; br2; oxidative addition; mechanisms allylic; investigating oxidative; addition mechanisms

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.