LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomically Dispersed Au-Assisted C-C Coupling on Red Phosphorus for CO2 Photoreduction to C2H6.

Photo from wikipedia

Single-atom catalysts have exhibited great potential in the photocatalytic conversion of CO2 to C2 products, but generation of gaseous multi-carbon hydrocarbon products is still challenging. Previously, supports of a single… Click to show full abstract

Single-atom catalysts have exhibited great potential in the photocatalytic conversion of CO2 to C2 products, but generation of gaseous multi-carbon hydrocarbon products is still challenging. Previously, supports of a single atom consist of multiple elements, making C-C coupling difficult because the coordination environment of single-atom sites is diversified and difficult to control. Here, we steer C-C coupling by implanting an Au single atom on the red phosphorus (Au1/RP), support with uniform structure composed of a single element, lower electronegativity, and better ability to absorb CO2. The electron-rich phosphorus atoms near the Au single atoms can function as active sites for CO2 activation. The Au single atom can effectively reduce the energy barrier of C-C coupling, boosting the reaction kinetics of the formation of C2H6. Notably, the C2H6 selectivity and turnover frequency of Au1/RP reach 96% and 7.39 h-1 without a sacrificial agent, respectively, which almost represents the best photocatalyst for C2 chemical synthesis to date. This research will provide new ideas for the design of high-efficiency photocatalysts for CO2 conversion to C2 products.

Keywords: single atom; co2; red phosphorus; c2h6

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.