LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physicochemical Confinement Effect Enables High-Performing Zinc-Iodine Batteries.

Photo from wikipedia

Zinc-iodine batteries are promising energy storage devices with the unique features of aqueous electrolytes and safer zinc. However, their performances are still limited by the polyiodide shuttle and the unclear… Click to show full abstract

Zinc-iodine batteries are promising energy storage devices with the unique features of aqueous electrolytes and safer zinc. However, their performances are still limited by the polyiodide shuttle and the unclear redox mechanism of iodine species. Herein, a single iron atom was embedded in porous carbon with the atomic bridging structure of metal-nitrogen-carbon to not only enhance the confinement effect but also invoke the electrocatalytic redox conversion of iodine, thereby enabling the large capacity and good cycling stability of the zinc-iodine battery. In addition to the physical trapping effect of porous carbon with good electronic conductivity, the in situ experimental characterization and theoretical calculation reveal that the metal-nitrogen-carbon bridging structure modulates the electronic properties of carbon and adjusts the intrinsic activity for the reversible conversion of iodine via the thermodynamically favorable pathway. This work demonstrates that the physicochemical confinement effect can be invoked by the rational anchoring of a single metal atom with nitrogen in a porous carbon matrix to enhance the electrocatalytic redox conversion of iodine, which is crucial to fabricating high-performing zinc-iodine batteries and beyond by applying the fundamental principles.

Keywords: zinc; zinc iodine; confinement effect; iodine; iodine batteries

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.