Urinary monitoring of diseases has gained considerable attention due to its simple and non-invasive sampling. However, urinalysis remains limited by the dearth of reliable urinary biomarkers and the intrinsically enormous… Click to show full abstract
Urinary monitoring of diseases has gained considerable attention due to its simple and non-invasive sampling. However, urinalysis remains limited by the dearth of reliable urinary biomarkers and the intrinsically enormous heterogeneity of urine samples. Herein, we report, to our knowledge, the first renal-clearable Raman probe encoded by an internal standard (IS)-conjugated reporter that acts as a quantifiable urinary biomarker for reliable monitoring of cancer development, simultaneously eliminating the impact of sample heterogeneity. Upon delivery of the probes into tumor microenvironments, the endogenously overexpressed β-glucuronidase (GUSB) can cleave the target-responsive residues of the probes to produce IS-retained gold nanoclusters, which were excreted into host urine and analyzed by Au growth-based surface-enhanced Raman spectroscopy. As a result, the in vivo GUSB activity was transformed into in vitro quantitative urinary signals. Based on this IS-encoded synthetic biomarker, both the cancer progression and therapy efficacy were quantitatively monitored, potentiating clinical implications.
               
Click one of the above tabs to view related content.