LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Expanded [23]-Helicene with Exceptional Chiroptical Properties via an Iterative Ring-Fusion Strategy.

Photo from wikipedia

Expanded helicenes are an emerging class of helical nanocarbons composed of alternating linear and angularly fused rings, which give rise to an internal cavity and a large diameter. The latter… Click to show full abstract

Expanded helicenes are an emerging class of helical nanocarbons composed of alternating linear and angularly fused rings, which give rise to an internal cavity and a large diameter. The latter is expected to impart exceptional chiroptical properties, but low enantiomerization free energy barriers (ΔG‡e) have largely precluded experimental interrogation of this prediction. Here, we report the syntheses of expanded helicenes containing 15, 19, and 23 rings on the inner helical circuit, using two iterations of an Ir-catalyzed, site-selective [2 + 2 + 2] reaction. This series of compounds displays a linear relationship between the number of rings and ΔG‡e. The expanded [23]-helicene, which is 7 rings longer than any known single carbohelicene and among the longest known all-carbon ladder oligomers, exhibits a ΔG‡e that is high enough (29.2 ± 0.1 kcal/mol at 100 °C in o-DCB) to halt enantiomerization at ambient temperature. This enabled the isolation of enantiopure samples displaying circular dichroism dissymmetry factors of ±0.056 at 428 nm, which are ≥1.7× larger than values for previously reported classical and expanded helicenes. Computational investigations suggest that this improved performance is the result of both the increased diameter and length of the [23]-helicene, providing guiding design principles for high dissymmetry molecular materials.

Keywords: expanded helicene; properties via; helicene exceptional; chiroptical properties; expanded helicenes; exceptional chiroptical

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.