LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metal-Ligand Role Reversal: Hydride-Transfer Catalysis by a Functional Phosphorus Ligand with a Spectator Metal.

Photo by kellysikkema from unsplash

Hydride transfer catalysis is shown to be enabled by the nonspectator reactivity of a transition metal-bound low-symmetry tricoordinate phosphorus ligand. Complex 1·[Ru]+, comprising a nontrigonal phosphorus chelate (1, P(N(o-N(2-pyridyl)C6H4)2) and… Click to show full abstract

Hydride transfer catalysis is shown to be enabled by the nonspectator reactivity of a transition metal-bound low-symmetry tricoordinate phosphorus ligand. Complex 1·[Ru]+, comprising a nontrigonal phosphorus chelate (1, P(N(o-N(2-pyridyl)C6H4)2) and an inert metal fragment ([Ru] = (Me5C5)Ru), reacts with NaBH4 to give a metallohydridophosphorane (1H·[Ru]) by P-H bond formation. Complex 1H·[Ru] is revealed to be a potent hydride donor (ΔG°H-,exp < 41 kcal/mol, ΔG°H-,calc = 38 ± 2 kcal/mol in MeCN). Taken together, the reactivity of the 1·[Ru]+/1H·[Ru] pair comprises a catalytic couple, enabling catalytic hydrodechlorination in which phosphorus is the sole reactive site of hydride transfer.

Keywords: transfer catalysis; phosphorus; ligand; hydride transfer; metal

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.