LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Room Temperature Intermolecular Dearomatization of Arenes by an Acyclic Iminosilylene.

A novel nontransient acyclic iminosilylene (1), bearing a bulky super silyl group (-SitBu3) and N-heterocyclic imine ligand with a methylated backbone, was prepared and isolated. The methylated backbone is the… Click to show full abstract

A novel nontransient acyclic iminosilylene (1), bearing a bulky super silyl group (-SitBu3) and N-heterocyclic imine ligand with a methylated backbone, was prepared and isolated. The methylated backbone is the feature of 1 that distinguishes it from the previously reported nonisolable iminosilylenes, as it prevents the intramolecular silylene center insertion into an aromatic C-C bond of an aryl substituent. Instead, 1 exhibits an intermolecular Büchner-ring-expansion-type reactivity; the silylene is capable of dearomatization of benzene and its derivatives, giving the corresponding silicon analogs of cycloheptatrienes, i.e. silepins, featuring seven-membered SiC6 rings with nearly planar geometry. The ring expansion reactions of 1 with benzene and 1,4-bis(trifluoromethyl)benzene are reversible. Similar reactions of 1 with N-heteroarenes (pyridine and DMAP) proceed more rapidly and irreversibly forming the corresponding azasilepins, also with nearly planar seven-membered SiNC5 rings. DFT calculations reveal an ambiphilic nature of 1 that allows the intermolecular aromatic C-C bond insertion to occur. Additional computational studies, which elucidate the inherent reactivity of 1, the role of the substituent effect, and reaction mechanisms behind the ring expansion transformations, are presented.

Keywords: temperature intermolecular; acyclic iminosilylene; dearomatization; intermolecular dearomatization; room temperature; ring expansion

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.