The Concordant Mode Approach (CMA) is advanced as a novel hierarchy for increasing the system size and level of theory feasible for quantum chemical computations of harmonic vibrational frequencies. The… Click to show full abstract
The Concordant Mode Approach (CMA) is advanced as a novel hierarchy for increasing the system size and level of theory feasible for quantum chemical computations of harmonic vibrational frequencies. The key concept behind CMA is that transferrable, internal-coordinate normal modes computed at an appropriate lower level of theory (B) comprise a superb basis for converging to vibrational frequencies given by a higher level of theory (A). Accordingly, high-level harmonic frequencies can be evaluated via CMA from a collection of single-point energies that essentially scales linearly in the number of atoms, providing nearly order-of-magnitude CPU time speedups. The accuracy of CMA methods was established by comprehensive tests on over 120 molecules for target Level A = CCSD(T)/cc-pVTZ with auxiliary Level B choices of both CCSD(T)/cc-pVDZ and B3LYP/6-31G(2df,p). Remarkably, the frequency residuals given by the diagonal CMA-0A(nc) scheme exhibit mean absolute deviations (MADs) of only 0.2 cm-1 and standard deviations less than 0.5 cm-1; the corresponding zero-point vibrational energies (ZPVEs) have negligible errors in the vicinity of 0.3 cm-1.
               
Click one of the above tabs to view related content.