LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

EnT-Mediated N-S Bond Homolysis of a Bifunctional Reagent Leading to Aliphatic Sulfonyl Fluorides.

Photo by josephtpearson from unsplash

Sulfur(VI) fluoride exchange (SuFEx) gives rise to a plethora of high-valent sulfur linkages; however, the availability of (aliphatic) sulfonyl fluoride manifolds lag behind, owing to the limited sources of introducing… Click to show full abstract

Sulfur(VI) fluoride exchange (SuFEx) gives rise to a plethora of high-valent sulfur linkages; however, the availability of (aliphatic) sulfonyl fluoride manifolds lag behind, owing to the limited sources of introducing the SO2F moiety via a classical two-electron approach. Recently, radical-based methodologies have emerged as a complementary strategy to increase the diversity of accessible click partners. In this work, synthesis of a bench-stable sulfamoyl fluoride reagent is presented, which may undergo sigma-bond homolysis upon visible-light-induced sensitization to form protected β-amino sulfonyl fluorides from alkene feedstocks. Notably, this offers an appealing strategy to access various building blocks for peptido sulfonyl fluorides, relevant in a medicinal chemistry context, as well as an intriguing entry to β-ammonium sulfonates and β-sultams, from alkenes. Densely functionalized 1,3-sultones were obtained by employing allyl alcohols as substrates. Surprisingly, allyl chloride-derived β-imino sulfonyl fluoride underwent S-O bond formation and ring closure to yield rigid cyclopropyl β-imino sulfonate ester under SuFEx conditions. Furthermore, by engaging a thiol-based hydrogen atom donor in the reaction, the reactivity of the same reagent can be tuned toward the direct synthesis of aliphatic sulfonyl fluorides. Mechanistic experiments indicate an energy transfer (EnT)-mediated process. The transient sulfonyl fluoride radical adds to the alkene and product formation occurs upon either radical-radical coupling or hydrogen atom transfer (HAT), respectively.

Keywords: reagent; bond homolysis; aliphatic sulfonyl; sulfonyl fluorides; sulfonyl

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.