LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reticular Design of Precise Linker Installation into a Zirconium Metal-Organic Framework to Reinforce Hydrolytic Stability.

Photo from wikipedia

Reticular chemistry allows for the rational assembly of metal-organic frameworks (MOFs) with designed structures and desirable functionalities for advanced applications. However, it remains challenging to construct multi-component MOFs with unprecedented… Click to show full abstract

Reticular chemistry allows for the rational assembly of metal-organic frameworks (MOFs) with designed structures and desirable functionalities for advanced applications. However, it remains challenging to construct multi-component MOFs with unprecedented complexity and control through insertion of secondary or ternary linkers. Herein, we demonstrate that a Zr-based MOF, NU-600 with a (4,6)-connected she topology, has been judiciously selected to employ a linker installation strategy to precisely insert two linear linkers with different lengths into two crystallographically distinct pockets in a one-pot, de novo reaction. We reveal that the hydrolytic stability of these linker-inserted MOFs can be remarkably reinforced by increasing the Zr6 node connectivity, while maintaining comparable water uptake capacity and pore-filling pressure as the pristine NU-600. Furthermore, introducing hydrophilic -OH groups into the linear linker backbones to construct multivariate MOFs can effectively shift the pore-filling step to lower partial pressures. This methodology demonstrates a powerful strategy to reinforce the structural stability of other MOF frameworks by increasing the connectivity of metal nodes, capable of encouraging developments in fundamental sciences and practical applications.

Keywords: hydrolytic stability; metal organic; linker; linker installation; metal

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.