LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomically Thick Oxide Overcoating Stimulates Low-Temperature Reactive Metal-Support Interactions for Enhanced Catalysis.

Photo from wikipedia

Reactive metal-support interactions (RMSIs) induce the formation of bimetallic alloys and offer an effective way to tune the electronic and geometric properties of metal sites for advanced catalysis. However, RMSIs… Click to show full abstract

Reactive metal-support interactions (RMSIs) induce the formation of bimetallic alloys and offer an effective way to tune the electronic and geometric properties of metal sites for advanced catalysis. However, RMSIs often require high-temperature reductions (>500 °C), which significantly limits the tuning of bimetallic compositional varieties. Here, we report that an atomically thick Ga2O3 coating of Pd nanoparticles enables the initiation of RMSIs at a much lower temperature of ∼250 °C. State-of-the-art microscopic and in situ spectroscopic studies disclose that low-temperature RMSIs initiate the formation of rarely reported Ga-rich PdGa alloy phases, distinct from the Pd2Ga phase formed in traditional Pd/Ga2O3 catalysts after high-temperature reduction. In the CO2 hydrogenation reaction, the Ga-rich alloy phases impressively boost the formation of methanol and dimethyl ether ∼5 times higher than that of Pd/Ga2O3. In situ infrared spectroscopy reveals that the Ga-rich phases greatly favor formate formation as well as its subsequent hydrogenation, thus leading to high productivity.

Keywords: metal support; support interactions; low temperature; temperature; reactive metal; atomically thick

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.