LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monolayer-Assisted Surface-Initiated Schiff-Base-Mediated Aldol Polycondensation for the Synthesis of Crystalline sp2 Carbon-Conjugated Covalent Organic Framework Thin Films.

Photo by mariusoprea from unsplash

sp2 carbon-conjugated covalent organic frameworks (sp2c-COFs) with superb in-plane π-conjugations, high chemical stability, and robust framework structure are expected to be ideal films/membranes for a wide range of applications including… Click to show full abstract

sp2 carbon-conjugated covalent organic frameworks (sp2c-COFs) with superb in-plane π-conjugations, high chemical stability, and robust framework structure are expected to be ideal films/membranes for a wide range of applications including energy-related devices and optoelectronics. However, so far, sp2c-COFs have been mainly limited to microcrystalline powders, and this consequently hampered their performances in devices. Herein, we report a simple and robust methodology to fabricate large-area, free-standing, and crystalline sp2c-COF films (TFPT-TMT and TB-TMT) on various solid substrates (e.g., fluorine-doped tin oxide, aluminum sheet, polyacrylonitrile membrane) by self-assembly monolayer-assisted surface-initiated Schiff-base-mediated aldol polycondensation (namely, SI-SBMAP). The resultant sp2c-COF films show lateral sizes up to 120 cm2 and tunable thickness from tens of nanometers to a few micrometers. Owing to the robust framework and highly ordered quasi-1D channels, the sp2c-COF membrane-based osmotic power generator presents an output power density of 14.1 W m-2 under harsh conditions, outperforming most reported COF membranes as well as commercialized benchmark devices (5 W m-2). This work demonstrates a simple and robust interfacial methodology for the fabrication of sp2c-COF films/membranes for green energy applications and potential optoelectronics.

Keywords: methodology; framework; conjugated covalent; covalent organic; carbon conjugated; sp2 carbon

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.