LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two Pathways for the Degradation of Orpiment Pigment (As2S3) Found in Paintings

Photo by kattrinnaaaaa from unsplash

Paintings are complex objects containing many different chemical compounds that can react over time. The degradation of arsenic sulfide pigments causes optical changes in paintings. The main degradation product was… Click to show full abstract

Paintings are complex objects containing many different chemical compounds that can react over time. The degradation of arsenic sulfide pigments causes optical changes in paintings. The main degradation product was thought to be white arsenolite (As2O3), but previous research also showed the abundant presence of As(V) species. In this study, we investigate the influence of the presence of a medium on the degradation mechanism of orpiment (As2S3) using synchrotron radiation (SR)-based tomographic transmission X-ray microscopy, SR-based micro-X-ray fluorescence, and X-ray absorption near edge structure spectroscopy. Upon direct illumination of dry orpiment powder using UV–visible light, only the formation of As2O3 was observed. When As2S3 was surrounded by a medium and illuminated, As2O3 was only observed in the area directly exposed to light, while As(V) degradation species were found elsewhere in the medium. Without accelerated artificial light aging, As(V)(aq) species are formed and migrate throughout the medium within weeks after preparation. In both scenarios, the As(V) species form via intermediate As(III)(aq) species and the presence of a medium is necessary. As(V)(aq) species can react with available cations to form insoluble metal arsenates, which induces stress within the paint layers (leading to, e.g., cracks and delamination) or can lead to a visual change of the image of the painting.

Keywords: two pathways; pathways degradation; degradation orpiment; medium; degradation; orpiment pigment

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.