Benefiting from superior semiconducting properties and the angle-dependence of the bulk photovoltaic effect (BPVE) on polarized light, the two-dimensional (2D) hybrid perovskite ferroelectrics are developed for sensitive self-powered polarized photodetection.… Click to show full abstract
Benefiting from superior semiconducting properties and the angle-dependence of the bulk photovoltaic effect (BPVE) on polarized light, the two-dimensional (2D) hybrid perovskite ferroelectrics are developed for sensitive self-powered polarized photodetection. Most of the currently reported ferroelectric-driven polarized photodetection is restricted to the shortwave optical response, and expanding the response range is urgently needed. Here we report the first instance of a FAPbI3-derived (2D) perovskite ferroelectric, (BA)2(FA)Pb2I7 (1, BA is n-butylammonium, FA is formamidinium). It exhibited a notably high thermostability and broad-spectrum adsorption extending to around 650 nm. Significantly, 1 demonstrated ferroelectricity-driven self-powered polarized photodetection under 637 nm with an anisotropic photocurrent ratio of ∼1.96, ultrahigh detectivity of 3.34 × 1012 Jones, and long-term repetition. This research will shed light on the development of new ferroelectrics for potential application in broad-spectrum polarization-based optoelectronics.
               
Click one of the above tabs to view related content.