LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photochemical Organocatalytic Functionalization of Pyridines via Pyridinyl Radicals

Photo from wikipedia

We report a photochemical method for the functionalization of pyridines with radicals derived from allylic C–H bonds. Overall, two substrates undergo C–H functionalization to form a new C(sp2)–C(sp3) bond. The… Click to show full abstract

We report a photochemical method for the functionalization of pyridines with radicals derived from allylic C–H bonds. Overall, two substrates undergo C–H functionalization to form a new C(sp2)–C(sp3) bond. The chemistry harnesses the unique reactivity of pyridinyl radicals, generated upon single-electron reduction of pyridinium ions, which undergo effective coupling with allylic radicals. This novel mechanism enables distinct positional selectivity for pyridine functionalization that diverges from classical Minisci chemistry. Crucial was the identification of a dithiophosphoric acid that masters three catalytic tasks, sequentially acting as a Brønsted acid for pyridine protonation, a single electron transfer (SET) reductant for pyridinium ion reduction, and a hydrogen atom abstractor for the activation of allylic C(sp3)–H bonds. The resulting pyridinyl and allylic radicals then couple with high regioselectivity.

Keywords: functionalization pyridines; functionalization; chemistry; photochemical organocatalytic; pyridinyl radicals

Journal Title: Journal of the American Chemical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.