LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enantioselective C(sp3)-C(sp3) Reductive Cross-Electrophile Coupling of Unactivated Alkyl Halides with α-Chloroboronates via Dual Nickel/Photoredox Catalysis.

Photo by bel2000a from unsplash

Substantial advances in enantioconvergent C(sp3)-C(sp3) bond formations have been made with nickel-catalyzed cross-coupling of racemic alkyl electrophiles with organometallic reagents or nickel-hydride-catalyzed hydrocarbonation of alkenes. Herein, we report an unprecedented… Click to show full abstract

Substantial advances in enantioconvergent C(sp3)-C(sp3) bond formations have been made with nickel-catalyzed cross-coupling of racemic alkyl electrophiles with organometallic reagents or nickel-hydride-catalyzed hydrocarbonation of alkenes. Herein, we report an unprecedented enantioselective C(sp3)-C(sp3) reductive cross-coupling by the direct utilization of two different alkyl halides with dual nickel/photoredox catalysis system. This highly selective coupling of racemic α-chloroboronates and unactivated alkyl iodides furnishes chiral secondary alkyl boronic esters, which serve as useful and important intermediates in the realm of organic synthesis and enable a desirable protocol to fast construction of enantioenriched complex molecules.

Keywords: sp3 reductive; sp3; enantioselective sp3; sp3 sp3; cross; alkyl

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.