LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enabling Specific Photocatalytic Methane Oxidation by Controlling Free Radical Type.

Photo from wikipedia

Selective CH4 oxidation to CH3OH or HCHO with O2 in H2O under mild conditions provides a desired sustainable pathway for synthesis of commodity chemicals. However, manipulating reaction selectivity while maintaining… Click to show full abstract

Selective CH4 oxidation to CH3OH or HCHO with O2 in H2O under mild conditions provides a desired sustainable pathway for synthesis of commodity chemicals. However, manipulating reaction selectivity while maintaining high productivity remains a huge challenge due to the difficulty in the kinetic control of the formation of a desired oxygenate against its overoxidation. Here, we propose a highly efficient strategy, based on the precise control of the type of as-formed radicals by rational design on photocatalysts, to achieve both high selectivity and high productivity of CH3OH and HCHO in CH4 photooxidation for the first time. Through tuning the band structure and the size of active sites (i.e., single atoms or nanoparticles) in our Au/In2O3 catalyst, we show alternative formation of two important radicals, •OOH and •OH, which leads to distinctly different reaction paths to the formation of CH3OH and HCHO, respectively. This approach gives rise to a remarkable HCHO selectivity and yield of 97.62% and 6.09 mmol g-1 on In2O3-supported Au single atoms (Au1/In2O3) and an exceptional CH3OH selectivity and yield of 89.42% and 5.95 mmol g-1 on In2O3-supported Au nanoparticles (AuNPs/In2O3), respectively, upon photocatalytic CH4 oxidation for 3 h at room temperature. This work opens a new avenue toward efficient and selective CH4 oxidation by delicate design of composite photocatalysts.

Keywords: oxidation; ch4; ch4 oxidation; hcho; type; selectivity

Journal Title: Journal of the American Chemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.